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Abstract—In this study, a composite laminate with # layers subjected to dynamic antiplane impact
loading on the surface is investigated in detail. The transient responses of stresses and displacement
on each layer are expressed in a closed form. For the numerical investigation, a two-layered
composite laminate is considered. In analyzing this problem, the reflections and refractions of stress
waves must be taken into account, which will generate infinite waves on each composite layer. In
some classes of dynamic problem, the ability to find a static field may hinge on waiting for the wave
fronts to pass and the transient to die away. The characteristic time after which the transient effect
can be neglected is investigated in detail.

I. INTRODUCTION

The propagation of stress waves through an unbounded medium is not a difficult subject.
If the boundary is introduced, however, reflected waves will be generated from the free
surface, making the problem more complicated. The classical analysis in this area was first
proposed by Lamb (1904) ; he considered the half-space subjected to point and line loads
on the surface of a semi-infinite half-space. Since this early analysis of Lamb, a great
many contributions have appeared, pertaining to what is commonly referred to as Lamb’s
problem. de Hoop (1961) and Cagniard (1962) proposed a powerful and elegantly simple
method which is known as the Cagniard—de Hoop technique for inverting transforms in a
wide range of elastodynamic wave propagation problems. Buried source problems are of
considerable interest in seismology and have been studied by many investigators, including
Lamb. Nakano (1925) analyzed the buried line dilatation source in a half-space, but he
failed in generalizing his harmonic steady-state results to transient solutions. Lapwood
(1949) re-studied Nakano’s problem, and later Garvin (1956) also solved Nakano’s buried
line dilatation source problem by using a suitable distortion of the contour suggested by
the work of Cagniard. In Garvin's paper, the numerical results are limited to surface
displacement due to a dilatation source, and the generated waves in the medium are incident
longitudinal waves, reflected longitudinal waves and shear waves. Recently, Tsai and Ma
(1991) obtained the complete transient solutions of buried dynamic point forces and
displacement jumps for an elastic half-space.

The applications of composite materials have grown very rapidly for the last two
decades because of their high strength and light weight. Composite materials have been
widely used in aeronautical industries to replace metals in aircraft structures for the purpose
of weight saving. The increasing importance of composite materials in engineering appli-
cations has generated a wide interest in the mechanical properties of such media. The
methods to find the response of composite laminates under various conditions have
appeared to be of most significant concern in this field. The capability of composite materials
to transmit impact loads is often the critical feature of design. Composite materials are
sometimes chosen for use because of their static properties, and as an auxiliary matter they
are required to transmit dynamic loads. A good understanding of their static and dynamic
behavior under various loading conditions is needed. For static analysis, this has already
received widespread attention in the last two decades. However, the study of transient
response of composite materials subjected to dynamic loading has been intensively inves-
tigated in recent years. Hence the characterization and methodology for studying wave
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propagation in composite materials is of prime interest. Analytical investigation of the
composite materials subjected to impact loading has been meagre because the elastodynamic
stress analysis involves numerous parameters and is enormously complex.

Wave propagation in layered media should be studied extensively because of its wide
technological applications. A key to attacking these problems involves considering the
average stress and strain response to waves whose wavelengths are long compared with the
characteristic dimension of the layer. Sun ef al. (1968) have developed a continuum theory
for composite elastic materials which they have named the “effective modulus™ theory. The
effective modulus theory is based on the assumption that the layered medium behaves on
the whole as a homogeneous but transversely isotropic continuum. Harmonic waves in
composites with isotropic layers were also studied by Stern ef al. (1971), Hegemier and
Nayfeh (1973), Hegemier and Bache (1973), Drumheller and Bedford (1973) and Nemat-
Nasser and Yamada (1981). Transient plane waves propagating in a periodically layered
elastic medium were examined by Ting and Mukunoki (1979), Mukunoki and Ting (1980)
and Tang and Ting (1985). In studying the wave propagation in a layered medium, various
approximate theories have been proposed to predict the dynamic response. Most of the
approximate theories can predict satisfactorily the frequency equation due to a sinusoidal
oscillation and some can also predict the late-time asymptotic solution in a semi-infinite
layered medium due to a step load applied at the boundary.

Because of the difficulty in analyzing the transient response of infinite number of
reflected and refracted waves in a layered composite structure, only very few papers used
the transient analysis to study the phenomena of the wave propagation in a layered medium.
For transient waves, one could in principle obtain the solution by superimposing harmonic
waves of all frequencies and all modes. This approach, however, is not practical and a more
direct approach should be employed to study the transient waves. In this study, the transient
response of applying a concentrated antiplane dynamic point force at the top surface of an
n-layered composite laminate is investigated in detail. The material properties and the
thickness are different in each layer. The analytical results obtained in this paper are exact
and are expressed in a simple closed form, each mathematical term representing a physical
transient wave. For the numerical calculation, a two-layered composite laminate is inves-
tigated. The transient shear stresses at different positions in the two layers are presented
and compared with the corresponding static solution. The results of the numerical cal-
culations are used to investigate the characteristic time during which the transient effect is
important.

2. STATEMENTS OF THE PROBLEM

In the theory of elasticity there exists a special class of problems, known as plane
problems (i.e. inplane and antiplane), which can be solved more readily than the general
three-dimensional problem, since certain simplifying assumptions can be made in their
treatment. There are many physical situations where such a reduction is indicated. In two-
dimensional plane problems the components of the stress tensor are independent of one of
the coordinates, say z, and the displacement equations of motion can be split up into
two uncoupled systems. If the deformation described only by a displacement distribution
w(x, y, t) is called an antiplane shear deformation, this is the case that we have discussed in
this study. For this type of motion, shear waves apparently decouple completely from
compressional waves.

Consider a stress-free composite laminate with » layers, each layer differing in material
properties and thickness, as depicted in Fig. 1. Each layer is assumed homogeneous and
isotropic and perfect bounding is considered at the interfaces. Layer (1) denotes the top
layer, on which the dynamic loading is applied, and layer (n) is the bottom layer. A
Cartesian coordinate system is defined in the body in such a way that the antiplane
deformation is in the z-direction. The top face of the n-layered composite lies in the
plane y = 0 and —oc < x < oo. At time ¢ = 0, a dynamic concentrated antiplane force of
magnitude o, (per unit length in the z-direction) acts at x = 0, y = 0. The relevant stress
components are denoted by o,. and o,.. and the nonzero out-of-plane displacement is
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Fig. 1. Configuration and coordinate system of an n-layered medium.

denoted by w. Where w(x, y, 1) is the displacement in the z-direction, the corresponding
stress components follow from Hooke’s law as

ow ow
Uyz:l'ta’ O'xz=ﬂ$~

The boundary conditions on the top and bottom layers of the problem can be written
as

6'V(x,0,1) = 0,0(x) H(f) for —oo <x< 0, (N
oP(x,—h",f)=0 for —o0 <x< o0, )

where

in which #; is the thickness of the jth layer, d(x) is the delta function and H(f) is the
Heaviside unit-step function. The solution for a more general applied dynamic loading can
be obtained by a linear superposition. Perfect bonding along the interface is ensured by the
stress and displacement continuity conditions of each layer:

o (x, —h, 1y =alV(x, —h, 1) 1<i<n—1, 3)
w(x, =h', ) =w'* D (x, =K, ) 1<i<n—1. ()]

The propagation of shear wave in a homogeneous, isotropic elastic medium is governed
by the two-dimensional wave equation,
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where 5 is the slowness of the shear wave given by

b=1/c=/plu,

in which px and p are the shear modulus and the mass density of the material, respectively,
while ¢ is the shear wave velocity. This problem is solved by the application of integral
transforms. Applying the Laplace transform of eqn (5) over time and the two-sided Laplace
transform over x, the solutions of displacement and stresses in the Laplace transform
domain are given in layer (/) by

WO = A,er 4+ B, = 1,...,n, (©)
89 = puafd;e’” —Be"), i=1,...,n, o)

where

o, =\/b} =2,

in which p and 4 are the variables of the one-sided and the two-sided Laplace transform
parameters, respectively. Constants 4; and B, are to be determined through the transforms
of the boundary and continuity conditions.

3. TRANSIENT SOLUTIONS IN TRANSFORM DOMAIN FOR THE »-LAYERED MEDIUM

This section is concerned with the derivation of the undetermined coefficients A; and
B; in an n-layered medium. By using the general solutions obtained in the previous section
and the continuity conditions in eqns (3) and (4), the relationship of the unknown constants
A;and B; at each layer can be expressed as follows:

o Vi1 H Tipg €7 it

;]
A; L T Py € 2P his

®)

where

il — iy %ig

. 9)
30 S T P ¢

Viiie1 =
From the boundary condition of eqn (2), we have
A, = B, e*",
Hence
T,=1

The relationship of the unknown constants for different layers can be obtained from
continuity conditions. The results are
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Aier _ fi+l/iep(“'“_:i)hi =G, (10)
Ai T4y T e e
B, - Ti+lfi+l/ie_2’°"+'h"+‘ . (”)
B T et e by,
where
. 12)
S J17 75 o [P P (
From the boundary condition at the top face as expressed in (1), we have
A= B+ (13)
P %y
Also from eqn (8), we have
B
A4, =T:ezmm. : (14)
A, and B, can be obtained by sblving eqns (13) and (14), which are
1
4, = LI (15)
1—T e 2" p’u,a,
T —2pah
B, e T % (16)

=T e pue

Consequently all the unknown constants 4, and B, for each layer can be obtained in
terms of A, from the results expressed in eqns (8), (10), (11), (15) and (16). For example,
the constants A4; and B, at the ith layer can be expressed as follow:

4= {H G,}A, - {H G,}l 1 g (17)

,
j=1 i=1 —Tye " plua,

B, = T,e~ " 4 {ﬁ G } < = (is)
= [ P = ; ,
i ’ j=1 ! l""Tl e’zlm'hl pzﬂlal )
where

k

n Gj=G[Gz ..... Gk. (19)

Finally, from the result that 7, = 1 and eqn (8), T, can be determined, and G, can also be
determined from eqn (10). The solutions of displacement and shear stress in the Laplace
transform domain can then be obtained from eqns (6) and (7), respectively. '
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4. TRANSIENT SOLUTIONS FOR THE TWO-LAYERED MEDIUM

In the previous section, the solutions in the Laplace transform domain are constructed
for general n-layered medium. The transient full-field solutions can then be obtained by
Laplace inversion of eqns (6) and (7). In order to explain the methodology for constructing
the infinite reflected and refracted waves generated at each layer in time domain, a two-
layered composite laminate is chosen to analyze the transient problem in detail. In this case
we have n = 2 and

1 o

Al = S
I=Ty e~ " p’ua
o- o0
=—"— Y (T, e7mhym, (20)
PPy m=o

where

Vi e

Tl = S
14y, 7200
=i+ ipfon Z Vo €720t (21
i=0
POy — Ha %o 2p
",:1——r=—",= —_—, ,:1—,=_——-,
V12 fij2 Y2 10 F ot o Y211 110, + 120

Combining eqns (20) and (21), 4, can be expressed in an infinite series, and the first few
terms are

o

o =, ) : "
A4, = £ Z {Vuz +finfon Z Yo e—2(1+1)p12h2} e 2
, 2J 2 RE

PPy m=o i<
% —2pu,h —2p(aafiy e, hy)
= 2 {1+’yl/2e 7% ‘+f1/2f2/16 Ploafiy 71
D%
+y21 fifon e L R } (22)

Each term in eqn (22) represents propagating waves in the first layer and with the
propagation direction along the negative y-axis. The first term in eqn (22) represents the
incident wave generated by the dynamic concentrated loading at the top face. The second
term represents the wave which is reflected from the interface and then reflected again from
the upper free surface. The third term represents the wave which is refracted from the
interface twice and then reflected from the upper free surface. The fourth term represents
the wave which is refracted into the second layer, reflected from the interface and the lower
free surface, refracted from the interface and then reflected from the upper free surface.

The value for B, is represented as follows:

T e~ h oo 6, &

— _ —2px b Ym+1

BI —1 Tk, 2 == Z {T]C 1 1}
—Te Py prHdym=0

Go

—2pxh —2pxashy— 2poh
= {Vl/ze PRI f g foyy €7 ST AP
Doy

+?2,'1f1/2f2/1 el4pa2h2_2m"hl+ ..... } (23)
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Each term in eqn (23) represents propagating wave in the direction toward the positive y-
axis for the first layer. The first term represents the reflected waves from the interface. The
second term represents the wave which is refracted from the interface twice. The third term
represents the wave which is refracted from the interface, reflected from the lower free
surface and the interface of the second layer and refracted again from the interface.

The constants A4, and B, at the second layer can also be obtained from the similar
procedure as indicated for the first layer. The results are

g, }(‘l” e/)(ocz—atl)l” < x ‘
A2 — _,‘_i'__~____{ Z (..),1/2 T2 e“zﬂaghg)"l} { z (T] e,’.pzlhl)r}

p‘;ﬂzfxz m=0 i=0
O'(] . _ y; . .y _9
=, {fl/z era +vo0 fin erim X = 2ol
J L)
+yan e fip et T Ay (24)
To < —2px b \m g —pay(h| 4 2hs) —poh < — 2pa,hy\m
By = —— Z (Tye ") Sijpem ot Eimeai z (Tyy10€ 22)
phﬂzav m=10 i=0
. Oo . ~pay Uy + 2h,) —pa by n g —poay(hy+dhsy) —px
=7 {fine : +y21f12€ ?
P20
+A‘Iy2;‘ly2,"l.fl/2 e*p?-._,(hl+(w/7:)*[m|lzl +... .. } (25)

We now focus our attention on the constructing of the transient solution for the shear
stress o'!’ of the first layer. The solution of ¢!’ in the transform domain is obtained from

eqns (7), (22) and (23). The result is

Gl = puoy (4, € — By e )

epot,,\ Pl
_12 # d — 2p(xqhy
=0, {(Thy e 0 fin fo e Pehraid )
e PHr
-2 — -2
—0, P —ua e P fy o o T (26)

The remaining task is to evaluate the inverse transforms of this expression. The
inversion formula for the two-sided Laplace transform for the shear stress 6! leads to

g Ay i
gh =20 {ep(ml}'+}\')+yl 5 ePlaty—2k)+axl 4 }d}
vz . ; RN .

: 2mi P

oo /oy i ) .
. {,},1 , e—p[al(,\drlh‘)—/..\‘) +fl‘2 f2’l e play (54 20)) + 22555 — Ax]
S itz
Ay i

+71070 g Ptk dh) —ad } dA. (27)

The overbar symbol is used to denote the transform on time ¢. The exact transient
solution in time domain can then be found by inverting the Laplace transform by Cagniard-
de Hoop method. The idea of the Cagniard—de Hoop method is to deform the path of
integration in the A-plane in such a manner that the inverse Laplace transform of the
integral along the new path of integration can be obtained by inspection. The desired path
of integration in the A-plane for the first few waves is defined by the following equations:
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(B2 Py Jx =1, (28)

(B —J2) 2 (p+2h) —ix =1, (29)

(B2 — A2 (y+2h)) +2(b3 — A2) 2hy —ix = 1, (30)
— (b =) (v—2h)—Ax = 1, 31

(b2~ i) (y+4h)—Ax = 1. (32)

Equations (28), (29), (31) and (32) can be solved analytically to describe a hyperbola. We
cannot solve eqn (30) analytically for /, but from the formulation of a quartic algebraic
equation, the roots can be obtained explicitly. The roots of equations (28)—(32) are denoted
as A, Ay, 4, 24 and Zs, respectively. The arrival time of each waves in eqns (28)—(32) is
denoted as ¢, 5, 3, ts, and 15, which can be determined from the condition when the
imaginary part of 1,, 4,, 43, A4 and As vanishes, respectively. Equations (28)—(32) represent
the i, r, frf, rr and rrr wave, respectively.

The transient solution of ¢!! in the upper layer can be written as a form of an infinite
series,

RUISMEEED) lm{ﬂ(if)%H<r—r,-)}. (33)

f
The first few terms are
Fi(4) =1,
F(25) = —y10(Aa),
Fi(73) = 1=yia(),
Fy(ha) = 712(4a),

Fs(as) = —V%/:(;-s),
where

/11\//1)::'12—#2\/ b%_/‘.VZ

}’1/2(2) = = PR
Hin/ b7 =7 o b3 — 42

From the similar procedure as indicated above to construct the transient solution in
the first layer, the transient solution for ¢2 in the second layer is found to be

oA

t’*H(t—z,*)} . (34)

0- KL
Oy v 1) = 0 *( %
o2 (x,y, 1) = - i;l Im{Fi (45 P

The first few terms are
FY(2) = fi. (b)),

Fi(4) = Y]/Z()“)fl/?()')v

FX(A) = fi2(4),
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Fi¥(2) =f|,2(;1)“/2z1 (),

where

o 2psn /b3 — 12
fia(h) = NAE .

[p? ;2 /p2_;
HiN/ 01 — 2 +ﬂ2\:” 2—4

and ¥, A%, A¥ and ¥ are the roots for the following respective equations:

— (B3 =) 2 (yh)+ (B =A%) P —Ix =1, (35)

— (B3 =22 P (y+hy) =3B} =12 Ph —x =1, (36)
(B3 — ANV (y 4 hy 4 2h) + (BT —2) 2h —Ax = 1, (37
— (B3 =) (v hy =2k + (B2 =AD" h —ix =t (38)

The arrival times ¢, t¥, #¥ and ¥ are determined from the condition when the imaginary
part of A}, 2¥, A* and A¥ vanishes, respectively. Equations (35)—(38) represent the f, #rf, fr
and frr wave, respectively.

In order to understand the detail for the transient response approaches to the cor-
respondent static value, the static solutions of the two-layered medium for applying a static
point loading o, at the top surface are obtained by using the Fourier transform method.
The result of the displacement can be expressed as the following form:

4 < 7 7 ¢ A !
o Z {}A’l/2+fli2f2,'l Z )/'2,,,G(O,m+])}G(I’l,O), (39)
nr =0

T =0

w =

where
G(i,)) = In{[x?+ (v —2jh, —2ih,)?][x* + (v + 2h, +2ih,)*]} ., G(0,0) = In(x? +7).
The product of the function G should be evaluated by the following rule:
G(a,b)G(c,d) = Gla+c,b+d),

and

: {i :f»z,,lmo,z)}{io ratfiofon Y ?3’,.P(0,m+1>J"P<n,0>}, (40)

m=10
where

P(i,j) = In{[x* + (y— 2jh; —2il: )’ 1[x* + (y+2(j+ Dh, +2(+ Dh,)*1},
P(a,b)P(c,d) = P(a+c¢,b+d),

in which

SAS 32:5-H
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5 _a :Hl—/l'Z
2 v fy + 2’
2 2u ; 2u
f1/2= s J2n =_bl-
Ko+ “F
The solution for the shear stress g, is
o =% . . . o . n
Uﬁvi) = _nﬂ {}'1/2 +/12/ 20 Z P219(0, m+ 1)} g(n,0), (41)
n=0 n=10
where
y—2jh, —2ih, y+2jh, +2ih,

g(i.j) = ; .
/ x>+ (v—=2jh, =2ihy)* X 4+ (y+2h, +2ih,)?

g(a.b)glc.d) = gla+c.b+d), g(0,0)= ;; ,

2
,

o = Z0/12 {i ?'z,/.p(o,o}{ S Brstfinfon 3 «;’zy,p(o,m+1)]"p(n,0)}, 42)

yz
T I=40 n=70 m=0

where

y—2jh, —2ih, N Y420+ Dhy +2(i+ D,
A (y—=2h, —2ih,)* X2+ +20+ Dh, + 20+ Dhs]?’
pla,byp(c,d) = pla+c,b+d).

p@.j) =

5. NUMERICAL RESULTS

With the explicit transient solution obtained in the previous section, the transient
response will be investigated and discussed in detail in this section. For the numerical
investigation, a two-layered composite laminate is considered. The ratio of the thickness
for the two-layered medium is chosen to be #,/h, = 0.8. At time ¢ = 0, an antiplane dynamic
concentrated loading with magnitude g, is applied at the top surface of the first layer. The
time dependence of the loading is represented by the Heaviside step function H(f). The
wave fronts in this two-layered medium at the early time are shown in Figs 2 and 3. In Fig.

Ci /G =1.3, h,/h=0.8, t/b,h=1.8, (h=h,+h;)

frf s i
rer r h

i1 1

] @Wf
. r
-0.2 | JELJNL 2L B I B B Y A BN I B A B B Y B |:fr:rlrlt||llllllllllllll
-1. -0. -0.1
Fig. 2. Wave fronts of the incident, reflected and refracted waves of a two-layered medium for
ciep = 1.3,

Ci /C: =0.7, h,/h:=0.8, t/b,h=2.0, (h=h +h;)

V\ frf rr ]
— rer i
r
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0.2 ] frr rrf f
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Fig. 3. Wave fronts of the incident, reflected and refracted waves of a two-layered medium for
/ey =0.7.
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Fig. 4. Transient shear stress history at different field points in the second layer for ¢,/c, = 1.3.

2, the ratio of the shear wave speed ¢,/c; equals 1.3 and a head wave will be generated in
the first layer. Only the pure reflected waves (i.e. i wave, r wave, rr wave and rrr wave) in
the first layer are cylindrical curves, the head wave is an inclined straight line, and all other
wave fronts are smooth curves which are constructed by numerical calculations. The
transient shear stresses at different positions in the two-layered medium are presented in
Figs 4-8. Figures 4-6 present the transient shear stresses for the case that the shear wave
velocity in the first layer is smaller than that in the second layer. Figure 4 represents the
transient stress history of two points, one is at the interface (r/# = 0.59) and the other one
is located in the second layer. The time has been normalized by dividing by b,4(h = h,+ h,)
and the arrival time for each wave front is indicated in the figure. The static solutions
obtained from eqns (41) and (42) are also presented in the same figure and are used to
compare with the transient response. In Fig. 5, the transient responses for the point in the
first layer (r/h = 0.33) and the point at the interface (r/h = 0.56), which is directly below
the applied loading, are presented. In order to see the contribution for the head wave, a
particular point in the first layer is chosen such that the head wave will pass this point, and
the transient result for this point is shown in Fig. 6. Figures 7-8 show the results for the

Ly b, =2.0 b, /h =8

c,/c =13

5 —o-r/h=.38, § =~70°
—'rﬁ=.5€, § =—-90°
| fri o

frf rrt o orer

ISR NSNS
s 8
v F
D

-1trrrrrrrrr7oreerrerr T

1.8
t/brh

Fig. 5. Transient shear stress history at different field points in the first layer for ¢,/c, = 1.3
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Fig. 6. Transient shear stress history at different field points in the first layer for ¢,/c, = 1.3.
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Fig. 7. Transient shear stress history at different field points in the first layer for ¢;/c, = 0.7.

case that the shear wave velocity in the first layer is larger than that in the second layer.
The static solutions are also shown in these figures and the transient solution approaches
the correspondent static value as time increases. It is worthy to note that for applying point
force of Heaviside function dependence, the stress fields behave as the square root singularity
at all the reflected and refracted wave fronts, except for the case of the head wave.

6. CONCLUSIONS

Most of the studies for wave propagation in a layered medium focus on the deter-
mination of the dispersion relation or the frequency equation due to a harmonic oscillation.
Because of the difficulty in analyzing the transient response of an infinite number of reflected
and refracted waves in a finite-layered medium, the only available solutions are obtained
for the transient plane wave propagating in a periodically layered medium. In this study, a
general methodology is proposed to construct the transient solutions of a layered composite
laminate subjected to dynamic impact loading, which will generate infinite number of
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Fig. 8. Transient shear stress history at different field points in the second layer for ¢,/c, = 0.7.

nonplanar reflected and refracted waves in each layer. The Cagniard—de Hoop inverse
method 1s used, enabling us to investigate in detail the structure of the wave pattern and
transient solutions in time domain. The analytical results obtained in this study are exact
and are expressed in a simple closed series form, each mathematical term representing a
physical transient wave. The methodology provided in this study has already been suc-
cessfully extended to solve more complex types of problem, which deal with the transient
wave propagation in layered medium, by applying inplane dynamic loading by Ma and
Huang (1994).

In order to investigate the characteristic time after which the transient effect can be
neglected, numerical results of shear stress based on the transient analysis are presented
and compared to the corresponding static solution. The transient analysis in this study
tends toward the corresponding static value as expected. Generally speaking, the dynamic
transient effect is important under dynamic loading conditions. The dynamic response of
stress in the transient period is much larger than the static value. In the transient period,
the stress will change radically when the reflected or the refracted wave arrives. The transient
value of stress will tend toward the static value after first few waves have passed.
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